A Graph-Theoretic Game and its Application to
the k-Server Problem

Noga Alon * Richard M. Karp T David Peleg *
Douglas West *

TR-91-066

Abstract

This paper investigates a zero-sum game played on a weighted connected
graph G between two players, the tree player and the edge player. At each
play, the tree player chooses a spanning tree 7' and the edge player chooses
an edge e. The payoff to the edge player is cost(T), e), defined as follows:
If e lies in the tree T then cost(T,e) = 0; if e does not lie in the tree
then cost(T,e) = cycle(T,e)/w(e), where w(e) is the weight of edge e and
cycle(T, e) is the weight of the unique cycle formed when edge e is added to
the tree T. Our main result is that the value of the game on any n-vertex
graph is bounded above by exp(O(y/lognloglogn)).

The game arises in connection with the k-server problem on a road net-
work; i.e., a metric space that can be represented as a multigraph G in
which each edge e represents a road of length w(e). We show that, if the
value of the game on G is Val(G,w), then there is a randomized strategy
that achieves a competitive ratio of k(1 + Val(G,w)) against any oblivi-
ous adversary. Thus, on any n-vertex road network, there is a random-
ized algorithm for the k-server problem that is k - exp(O(y/log nloglogn))-
competitive against oblivious adversaries.

At the heart of our analysis of the game is an algorithm that, for any n-
vertex weighted, connected multigraph, constructs a spanning tree T' such

*Tel Aviv University. Supported by a US-Israeli BSF Grant.

tUniversity of California at Berkeley and International Computer Science Institute, Berkeley,
California.

tThe Weizmann Institute, Rehovot, Israel. Supported by an Allon Fellowship, by a Bantrell
Fellowship and by a Haas Career Development Award.

$University of Illinois. Research supported by ONR Grant N00014-85K0570 and by
NSA/MSP Grant MDA904-90-H-4011.

that the average, over all edges e, of cost(T,e) is less than or equal to
exp(O(y/log nloglogn)). This result has potential application to the design
of communication networks. It also improves substantially known estimates
concerning the existence of a sparse basis for the cycle space of a graph.

1 Introduction

Let G be a connected multigraph, and let w be a function from the edge set of G
into the positive reals; w(e) is called the weight of edge e. Consider a two-person
zero-sum game between a tree player and an edge player. At each play the tree
player chooses a spanning tree 7" and, simultaneously, the edge player chooses an
edge e. The payoff cost(T, e) is defined as follows. For an edge e that does not lie
in the tree T, let cycle(T,e) denote the weight of the unique cycle formed when
edge e is added to the tree 7. Then

0, if e lies in the tree T,
cycle(T,e)/w(e), otherwise.

cost(T, e) = {

Our main interest is in determining the value of this game for particular
weighted multigraphs, and in determining an upper bound on the value in terms
of the number of vertices.

We introduce some standard terminology. A mixed strategy for the tree player
is a probability distribution p over the spanning trees of G, assigning to each
spanning tree 7" a probability p(T); similarly, a mixed strategy for the edge player
is a probability distribution ¢ over the edges, assigning to each edge a probability
g(e). The min-max theorem of game theory tells us that

mpin max ; > p(T)q(e)cost(T, e) = max mpin ; > p(T)q(e)cost (T, e).

The common value of these two expressions is called the value of the game, and
is denoted Val(G,w). In the special unweighted case in which w(e) =1 for all e,
the value is denoted Val(G).

Our main results with respect to the game are as follows:

e For every weighted n-vertex multigraph G, w,

Val(G,w) < exp(O(y/lognloglogn)).

e There is an infinite sequence {G},},>1 of graphs such that G, has n vertices
and Val(G,) = Q(logn).

We also provide a near tight analysis of the game on several simple classes of
graph topologies, including cycles, cycles with cross edges, grids and hypercubes.

At the heart of our analysis of the game on arbitrary multigraphs is an algo-
rithm that, for any n-vertex weighted, connected multigraph, constructs a span-
ning tree T such that the average, over all edges e, of cost(T,e) is less than or
equal to exp(O(y/lognloglogn)). This algorithm provides us with a strategy for
the tree player in the game. As a byproduct, our algorithm improves the main
result of [SV] that deals with the choice of a sparse basis for the cycle space of a
given graph. The authors of [SV] show that for every n-vertex graph there is a
spanning tree so that the average length of a fundamental cycle is O(y/n), whereas

our result improves this estimate to exp(O(y/log nloglogn)).

The game arises in connection with the k-server problem on a road network;
i.e., a metric space that can be represented as a multigraph G in which each edge
e represents a road of length w(e). The class of these metric spaces seems to be
one of the most natural ones for considering the k-server problem, as any real con-
figuration of roads forms such a network. Note that any nontrivial road-network
has infinitely many points; a continuous circle, for example, can be represented
by a road network with two vertices and two parallel edges joining them.

We show that, if the value of the game on G is Val(G, w), then there is a ran-
domized strategy that achieves a competitive ratio of £(1+Val(G, w)) against any
oblivious adversary. Thus, on any n-vertex road network, there is a randomized
algorithm for the k-server problem that is k - exp(O(y/log nloglog n))-competitive
against oblivious adversaries.

In addition, the spanning tree algorithm has potential application to the design
of communication networks. Shortest-path trees are among the basic tools used
in communication networks for various control tasks. The obvious drawback of
a shortest path tree rooted at a vertex v is that while it provides optimal routes
from v to any other node, the quality of the routes provided by the tree between
other pairs of nodes may be poor. A natural measure for the quality of the path
connecting nodes u,w in the tree T is its stretch factor (or dilation), defined
as path(T,u,w)/path(G,u,w), where path(H,u,w), for a graph H, denotes the
weighted distance (i.e., the length of the shortest path) between v and w in H. It
is clear that there are graphs of diameter D for which any spanning tree incurs a
worst-case stretch of Q(D) for some pairs of nodes (the unit-weight cycle of 2D
vertices is an example for such a graph). It may therefore be useful to look for
trees that attempt to minimize the average stretch factor over all graph edges,
or even over all pairs of vertices in the graph. Our result provides a method for
constructing such a tree, which in some cases may provide an attractive alternative
to the standard shortest-path tree.

Let us comment that another viable alternative involves insisting on good
bounds for the worst-case stretch, at the cost of allowing cycles in the spanning
structure. It is known that for every graph there exist relatively sparse spanning
subgraphs, termed spanners, guaranteeing this property [ADDJ, PS]. However,
the use of a tree as our spanning structure may sometimes be preferred due to its
practical advantages, in terms of simplicity of the routing and control processes,
lower total channel costs, and so on.

2 Basic Examples

In this section we consider the game on several example graphs. The natural road
networks that are not trees include cycles and grids. The solution of the game
for the grid is difficult; asymptotics will appear in Section 6. Here we content
ourselves with easier examples. A strategy for the edge player has value v if the
minimum expected payoff for any tree against it is v, and a strategy for the tree
player has value v if the maximum expected payoff against it for any edge is v;
in other words, the value of a strategy is the payoff it ensures. The min-max
theorem guarantees optimal strategies with the same value. Note that if the game
has value v, then any choice given nonzero probability in the optimal strategy for
one player must have expected payoff exactly v against the optimal strategy for
the other player.

Example 2.1 The complete graph. Let G be the unweighted n-vertex simple
complete graph. If the edge player chooses uniformly among the edges, then
selection of any tree will have probability % of payoff 0 and probability (";2) of
a positive payoff. The minimum positive payoff equals the length of the shortest
cycle, which is 3. Therefore the expected payoff is at least 3 — g. Equality holds
only for the n-vertex stars, because other trees have fundamental cycles of lengths
exceeding 3. If the tree player chooses uniformly among the n n-vertex stars,
then any edge has probability % of payoff 0 and probability ("71;2) of payoff 3,
guaranteeing payoff at most 3 — %. Hence uniform edge selection and uniform star
selection are optimal strategies, and Val(G) =3 — 2. O

With arbitrary weights, the complete graph becomes rather complex. There-
fore, let us consider simpler graphs and introduce weights.

Example 2.2 Cycles and multi-cycles. If G is the n-cycle, let T; be the tree
omitting edge ¢, and let w; be the weight on edge i, with W = 3>, w;. If the tree

player assigns probability p; = i to T;, then every edge has expected payoff 1.
If the edge player assigns probability Jit to edge 7, then every tree has expected
payoff 1. Hence Val(G,w) = 1.

Now let G be the multigraph whose underlying simple graph is an n-cycle,
with G having n; copies of edge 7. Suppose that each copy of edge i has weight
w;, and let W =" w;. Each tree consists of one copy of each of n — 1 edges. Let
T; denote the trees having no copy of edge i, and suppose these are chosen with
equal probability totaling p;. If p; = 3, as before, then the expected payoff for a
copy of edge j is 1 +2(1 —p;)(1 — %) < 3 (as in a multigraph, two parallel edges
form a cycle of length 2). Hence Val(G,w) < 3. In fact, even for the unweighted
case Val(G) can be arbitrarily close to 3 when n and {n;} are appropriately
chosen. In particular, if w; = 1 and n; = m for all 7, then when the edge player
chooses edges uniformly the expected payoff of any treeis 1+2(1—1)(1— 1), so
Val(G) >3-2-2 4+ 2. 0O

In order to obtain higher values of the game for unweighted graphs, it is
apparent that we need to have a substantial fraction of non-tree edges, and that
large diameter will allow some of those edges to generate large cost (in any case,
small diameter leads to small Val(G)). The cycle meets the second criterion but
fails the first, which suggests the following example.

Example 2.3 Cycles with diagonals. Given n even, let G’ be the graph consisting
of an n-cycle C' together with the chords joining antipodal points on the cycle. We
prove 2 — % <Val(G) <3-— %; we do not have an exact solution for this graph.
The upper bound is achieved as follows. Let T" be a tree consisting of a path of
edges on C' and the 7 — 1 diagonals having one endpoint in the path. If the tree
player plays the n rotations of 7" with equal probability, then the expected payoff
ofan edge of Cis 0- 5 +4-(3 —2)+ (2 +1)-(2) = 3— 2, and the expected
payoff of a diagonal is 0 - (1 — nL/Q) +(n/2+1)- nL/Q =1+ 2. This upper bound
is not optimal, since in particular, the strategy of sticking to the edges of C' (and
choosing them uniformly) does not guarantee a payoff greater than 1 for the edge

player.

The uniform edge strategy establishes the lower bound. A tree containing no
diagonals has expected payoff [n + (%)(% + 1)]5, which is quite large. (Indeed,
such a tree is simply the cycle C except one of its edges. The cost of this edge with
respect to the tree is n and the cost of each diagonal is n/2+1). For any other tree
T, we claim there are at least two edges of C not in T that complete fundamental
cycles of length at least % + 1. Therefore, the expected cost of T is at least
[(2+1)2+4(%2 —1)]& =2 — 5 (since the cost of each non-tree edge is clearly at

\Y \Y \Y

2 1 n2

Figure 1: A portion of the twisted prism

least 4.) To prove the claim, view G as a M6bius band or twisted ladder (see Fig.
1); the cycle wraps around twice, and the diagonals become rungs of the ladder.
Select a diagonal edge e in T. Label the vertices u1, ..., u,/2 counterclockwise
from one end of e and vy, ..., v,/ counterclockwise from the other end. Let F'
be the component of 7" containing e that is obtained from 7" by deleting either or
both of u;v, /2 and vu, /o from T', if they are present. Let 7 [j] be the largest index
such that u; € F' [v; € F|. Then cost(T,uuiy1), cost(T,vjvj41) > 5 + 1, because
the choice of ¢ implies that the path in 7" between u; and u;,; must contain at
least one of {uy, v} for each £ in {7 +1,...,%,1,...,4}, and both of them for
some k. Similarly for vjv;;.. O

Example 2.4 Weighted cycle with diagonals. Consider the graph G given in
Example 2.3, but suppose the edges of C have weight 1 and the diagonals
have weight w > 1. Assume that n is an even multiple of k. Let 7} be a
tree obtained by taking - equally spaced diagonals, growing a path of length
[£=17 clockwise and |%51] counterclockwise from each endpoint of each diago-
nal taken, and adding cycle edges on one semicircle to connect these compo-
nents. The cost of a non-tree cycle edge is 2k + 2w, except for 2 edges with
cost 5 + w. The total cost of a set of £ — 1 consecutive non-tree diagonals is
ok — 1) + 2 K I+ 1)/2]) + (L+ 1)/2])] = 2(k— 1) + L[E]. If the
rotations of T}, are selected with equal probability, then the expected cost of an
edge of C is 2[(% + w)2 + (2k + 2w) (4 — 1)] = 2+ % — 28 The expected cost
of a diagonal (if £ is even) is 2 + % — +. If we choose k ~ V2w, then we obtain
Val(G,w) <2.707.... O

All of our examples here have values bounded by constants. However, it is
relatively easy to construct examples for which Val(G) = Q(logn). As is well
known there are 4-regular graphs on n vertices with girth clogn (cf. [Bo], pp.
107-109). For any tree, the n + 1 non-tree edges each have cost at least clogn.
Hence against the uniform edge strategy every tree has expected cost at least
(5)logn. In Section 5, we will see that the N-vertex grid also has cost ©(log N).

3 An Application: The k-Server Problem on an
Undirected Network

Our game on graphs first suggested itself in connection with the k-server problem,
which was introduced in [MaMcSl] and has been studied by many researchers.
The problem is set in a metric space M, and involves the use of k servers to
process a sequence of requests. At any stage in the processing of the sequence
of requests, each server is located at a point in M; the initial locations of the
servers are stipulated as part of the problem. Each request is specified by a point
r € M. A request at r is processed by moving one of the servers from its present
location to 7; the cost of processing the request is the distance the server moves.
A deterministic on-line algorithm is a deterministic rule for deciding which server
to move in response to a request. The choice must be determined by the initial
positions of the servers and the sequence of requests up to the present request.
It is because the choice is not allowed to depend on knowledge of future requests
that the algorithm is called on-line.

For any pair 7, p, where 7 specifies the initial positions of the k servers and p
specifies a finite sequence of requests, and for any deterministic on-line algorithm
A, let A(m, p) denote the cost that A incurs in processing the sequence of requests
p, starting with the servers in the initial positions 7. We may also associate with
the pair 7, p a real number OPT(r, p) denoting the minimum possible cost of
processing the request sequence p, starting with the servers in the k-tuple 7 of
initial positions; OPT (7, p) can be viewed as the cost that would be incurred by
an optimal off-line algorithm that knew the entire request sequence, as well as
the initial positions of the servers, in advance, and thus could determine the least
expensive way of processing the entire request sequence.

Research on the k-server problem focuses on determining the factor in extra
cost that a deterministic on-line algorithm must pay because of the handicap of
making its decisions on-line, without knowing the future. This is formalized as
follows. Let C' be a positive constant. The deterministic on-line algorithm A is
called C-competitive if there exists a positive constant a such that, for all pairs

5 P,

A(m,p) < C-OPT(m, p)+ a.

In [MaMcS]] it is shown that, for every positive integer k, every metric space M
with at least k£ + 1 distinct points, and every C' less than k, there does not exist
a C-competitive deterministic on-line algorithm. Thus, except in trivial cases, it
is impossible to achieve a competitive factor less than k. On the other hand, in
[FiRaRa] it is shown that, for every positive integer k£ and every metric space M,
there exists a C'-competitive deterministic on-line algorithm, for some C, where
C depends on k£ but not on the metric space. Thus, a bounded competitive

factor is always achievable. Chrobak and Larmore [ChLa] consider a special type
of metric space, that might be called a treelike road network. Such a network
consists of a tree T in which each edge {u,v} is an interval of length w(u,v)
between vertex u and vertex v. The metric space consists of the union of all
these intervals. The distance between two points z and y is just the length of the
unique simple path between x and y in the network. Chrobak and Larmore show
constructively that, for any treelike road network, and any number of servers k,
there is a k-competitive deterministic on-line algorithm, matching the lower bound
of k established in [MaMcSl].

It is also possible to consider randomized on-line algorithms, in which the
server to move at each step is chosen by a random experiment which, of course,
takes into account the initial positions of the servers, the sequence of requests up
to the present one, and the choices made by the algorithm at previous steps. In
the case of a randomized algorithm, the cost A(m,p) is a random variable. In
defining the competitive factor achieved by a randomized on-line algorithm, we
view the request sequence as being specified by an adversary who is trying to
foil the algorithm. We distinguish between two types of adversaries: the oblivi-
ous adversary, who specifies the entire sequence of requests in advance, and the
adaptive adversary, who, in specifying the next request, can take into account the
algorithm’s responses to all previous requests. In this paper we restrict attention
to oblivious adversaries. The randomized algorithm A is said to be C-competitive
(against oblivious adversaries) if there exists a positive constant a such that, for
every k-tuple 7 of initial positions and every request sequence p,

E[A(m, p)] < C-COST(m,p) + a,

where E denotes mathematical expectation. Several examples are known in which

randomized algorithms can achieve a smaller competitive factor than deterministic
ones [BBKTW, BLS, FKLMSY].

We consider the k-server problem on a class of metric spaces that generalize
the treelike road networks of [ChLal]. Such a space is specified by a multigraph G
in which each edge e has a positive real weight w(e). The edge e = {u,v} may
be viewed as an interval of length w(e) between vertices v and v. The metric
space M (G, w) consists of the union of all these intervals; the distance between
two points z and y is just the length of the shortest path between x and y; we
shall sometimes refer to such a metric space as a road network.

The following theorem establishes a connection between our two-person game
and the k-server problem on a road network.

Theorem 3.1 Let G be a multigraph and w a function assigning to each edge of

G a positive real weight w(e). Then, for every k, there is a k(1 + Val(G,w))-
competitive randomized on-line algorithm for the k-server problem on the road
network M(G,w).

Proof: The algorithm is as follows.

e Using an optimal mixed strategy for the tree player in the game defined by
G and w, select a spanning tree T in (.

e Along each edge e not in T, choose uniformly a random point z(e), and place
a “roadblock” at x(e); more precisely, replace e = {u,v} by two intervals
[u,z1(e) and [z5(e), v], where x;(e) and z5(v) are new points, distinct from
all points in the original metric space. The edge [u,z(e)] is of the same
length as the interval [u,z(e)], and the interval [z9(e),v] is of the same
length as the interval [z(e),v]. This transformation converts the original
road network to a treelike road network with the same set of points but a
different distance function.

e Process the request sequence by executing the (deterministic) Chrobak-
Larmore algorithm on this derived treelike road network.

Let the random variable A(m, p) denote the cost that the above randomized
algorithm incurs in processing the request sequence 7, starting from the initial
server positions p. Let OPT(m, p) denote the optimal off-line cost of processing p,
starting from server positions 7, on the road network defined by multigraph G and
weight function w. Let the random variable OPT'(m, p) denote the optimal off-
line cost of processing p, starting from the server positions 7, in the treelike road
network constructed by the algorithm. By the k-competitiveness of the Chrobak-
Larmore algorithm, A(r, p) < k-OPT'(w, p) + a. To complete the proof, we shall
show that

E[OPT'(m,p)] < (1 + Val(G,w))OPT(m, p). (1)

Suppose that the tree player has selected a spanning tree 7" of G and then for
each non-tree edge e, has placed a roadblock at a random point z(e). Consider
a particular sequence of moves on the original road network that processes the
sequence of requests p starting from the initial k-tuple of server positions 7 at
cost OPT(m, p). Let p = pipa...pp. Fori =1,2,...,t, let (i) be the index of
the server that processes request 7. Then it is possible to satisfy p on the derived
treelike road network by having server z(i) process request p;, for each i. The
server may not be able to follow the same path it would have followed on the
original network, because of the presence of roadblocks. However, the server can
simulate the path it would have followed on the original road network, except
that, whenever it encounters a roadblock z(e), it traverses the unique path in the

9

treelike road network between z;(e) and z9(e) in order to get to the other side
of the roadblock. The cost of each such detour is cycle(T, e), the weight of the
unique cycle formed by the edge e with the tree T'.

We now compute the expected cost of all the detours, given that the tree
player uses an optimal mixed strategy. Let p(T) be the probability that the tree
player chooses spanning tree 7. Let d(e) be the distance that servers travel along
edge e in a particular sequence of moves achieving cost OPT(w, p) in the original
network; then

> d(e) = OPT(m,p).

If z(e) is a randomly chosen point along edge e, then the expected number of
times that servers cross the point z(e) is g((ee)). Each crossing of the point z(e)
requires a detour of cost 0 if e lies in 7" and cycle(T, e) if e does not lie in 7. Thus,
the expected cost of detours associated with the edge e is exactly d(e)cost(T, e),

and the expected total cost of detours is

; Y p(T)d(e)cost(T,e) = OPT(, p) ; > p(T)q(e)cost(T,e),

where
d(e)

1©) = 5P)"

But since the sequence of numbers {q(e)} constitutes a probability distri-
bution, it follows that the expected sum of detours is bounded above by
OPT(m, p)Val(G,w), and hence Eq. (1) follows. O

Corollary 3.2 There is a 2k-competitive randomized algorithm on the circle.
Proof: Follows immediately from Example 2.2 (or even from its special case

corresponding to a cycle of 2 vertices). O

Note that as shown in [FRRS] there is a deterministic O(k®)-competitive al-
gorithm for the circle.

4 An Optimization Problem Related to the Tree
Game

In this section we introduce a natural optimization problem and show that it is
closely related to our graph-theoretic game. Let G be a connected multigraph
with edge multiset £ and let w be a function that assigns to each edge e in G a

10

positive weight w(e). Assume that the edge weights are normalized so that the
lightest edge has weight 1. For any spanning tree 7" of GG, and any edge e of G, let
path(T, e) denote the weight of the path in 7 between the endpoints of e. Define

cost* (T, e) = path(T,e)/w(e) .
Also, for every subset of edges E', denote

cost*(T,E') = >_ cost™(T,e).

ecE'

Let S(G,w,T) = cost*(T, E)/|E|. Let Syu(G,w) = miny S(G,w,T), where T
ranges over all spanning trees of G. In the unweighted case, where w(e) = 1
for all e, we abbreviate S, (G, w) by Syt (G). We shall show that the problem of
finding a spanning tree that minimizes S(G, w, T) is closely related to the problem
of finding optimal strategies for the tree player and edge player in a variant of our
tree game. In this new game, the payoff to the edge player when the edge player
chooses edge e and the tree player chooses spanning tree T is cost*(T,e). Let the
value of this game be denoted Val*(G, w). In the unweighted case, we abbreviate
Val*(G,w) by Val*(G). Then, since |cost(T,e) — cost*(T,e)| < 1 for every edge
e, |[Val(G,w) — Val*(G,w)| < 1. Thus, our new game is very closely related to
the original one.

Let G, w be a weighted multigraph. The operation of replication of an edge e
replaces the edge e by one or more parallel edges of weight w(e) between the end
points of e. Any weighted multigraph created from G,w by a sequence of such
operations is said to be obtained from G,w by replication.

Theorem 4.1 Val*(G,w) = supg , Sopt(G',w'), where G',w' ranges over all
weighted multigraphs obtained from G, w by replication.

Proof: Recall that

Val*(G,w) = max Irgn; g:p(T)q(e)cost (T,e),

where g ranges over probability distributions for the edge player, and p over prob-
ability distributions for the tree player. For each fixed probability distribution
q, Yo 2o P(T)q(e)cost* (T, e) is minimized by a probability distribution p concen-
trated on one tree; this is an instance of the general observation that, if one of
the players in a zero-sum two-person game announces his mixed strategy, then
the other player can play optimally by choosing a pure strategy. It follows that

Val*(G,w) = max mTln;q(e)cost (T e).

11

Now, consider any weighted multigraph G', w' obtained from G, w by replication.

Let d(e) be the number of copies of edge e, and let g(e) be %. Then ¢ is a

probability distribution, and

Sopt(G',w') manq Jeost* (T, e).

It follows that Sou(G',w') < Val*(G,w). Conversely, let ¢ be the probability
distribution for the edge player that maximizes minr ", q(e)cost*(T,e). For any
(large) integer M, let GM, w™ be obtained from G, w by making 1+ | Mq(e)| copies
of each edge e. Then, clearly, as M tends to infinity, So,(GM, w™) converges to
Val*(G,w). The conclusion of the theorem follows. O

An edge-transitive graph is a graph G such that for any edges e, e’ in G there
is an automorphism o in the automorphism group I'(G) such that o takes the
endpoints of e to the endpoints of €'. In the case of an unweighted edge-transitive
graph, we prove that the optimization problem solves the game.

Theorem 4.2 If G is edge-transitive, then Val*(G) = Sop(G).

Proof: 1If the edge player plays each edge with equal probability, the expected
payoff is at least S,,:(G) for any tree. Let T be a tree with S(G,T) = S, (G), and
let T be the collection of images of T under the elements of ['(G). Foreach 7" € T,
let the probability of playing o(T') be times the number of automorphisms

o such that o(T) =T".

IF(G)\

We claim that the expected payoff for this tree strategy is S,p:(G) for every
edge, which completes the proof. Note that cost*(T, e) = cost*(o(T'), o (e)). Also,
Lagrange’s Theorem states that if a group (I'(G)) acts on a set S (= E(G)), then
the number of group elements taking e € S to any member of its orbit (including
to itself) is the same. Hence the expected payoff for edge e is

% zg:cost*(o(T), e) = % ;cost*(T, o le)) = |1£| |‘2|| Zcost (T, €e') = Sopt(G).

O

5 Upper and Lower Bounds for the Tree Game
on n-Vertex Multigraphs

We begin with a lower bound on Val*(G).

12

Theorem 5.1 There exists a positive constant ¢ such that, for all n, there exists
an n-vertex graph G, such that Val*(G,) > clnn.

Proof: The following is a known result in extremal graph theory (cf. [Bo],
pp. 107-109): there exists a positive constant a such that, for all n, there exists
an n-vertex graph G, with 2n edges such that every cycle in G,, is of length
at least alnn. Let T be any spanning tree in G. Then, for any non-tree edge
e, cost*(T,e) > alnn — 1. Since more than half the edges are non-tree edges,
it follows that, for every T, ﬁ Yocost*(T,e) > 2(alnn — 1). Thus, Sex(G) >
s(alnn — 1) , and it follows from Theorem 4.1 that Val*(G@) > L(alnn—1). O

We next give a preliminary result showing that for bounding Val*(G) from
above, it is sufficient to consider multigraphs with at most n(n + 1) edges, count-
ing multiplicities. (Note that in the context of the k-server problem we are really
interested only in graphs. However, the construction technique employed in our
proof makes it necessary to prove the result in the more general setting of multi-

graphs.)

Lemma 5.2 For every n-vertex multigraph G, w, there exists a multigraph G', w'
on the same set of vertices and at most n(n + 1) edges, such that Sy (G, w) <
2 Sopt(G',0').

Proof: Let E be the edge multiset of G, and let E*® be the (maximal) set of
distinct edges in E, where two edges are considered distinct if they don’t have the
same pair of end points. (That is, E™P contains a single representative edge uv
for every pair of vertices u and v that are adjacent in G.) For each edge e € E*¢,
let d(e) be the number of copies of e in E, and let w'(e) be the lowest weight of a
copy of e in G, w. Then the cardinality of E (i.e., the total number of edges in G

counting repetitions) is
B[= > d(e)

ecEset

Consider a new multigraph G’ with the same set of distinct edges, but with each
edge e occurring r(e) times instead of d(e) times, where

d(e)| E*|
rle) =1+ |—7—1- (2)
|E|
Then the cardinality of the edge multiset E’ of G’ satisfies

set|

E|

B = E:r@)SLWﬂ+

eeEset

> d(e) = 2|E*Y. (3)

eeEset

13

Since E*¢ contains at most one edge per pair of endpoints, including self-loops,
it follows that G’ has at most n(n + 1) edges, as required.

It remains to bound St (G’, w'). Combining Eq. (2) and (3) we get

d(Q)| | _ d(e)| 2
B2 aE @)

r(e)

v

The multigraph G’ has a spanning tree T such that

1
|E|

Sopt(G',w') = > r(e)cost*(T, e, w') , (5)

eeEset
with the notation cost*(T,e,u) denoting cost* defined with respect to a weight
function u. Using Eq. (4) and (5) and the choice of w', we find that

Sopt (G'y w > d(e)cost* (T, e,w) .

eeEset

- 2IEI

But, since 7T is a spanning tree of G as well as G’, this last expression is at least
Sopt(G,w) /2, 50 Sopt (G, w) < 28, (G, w'). O

Before we state and prove our upper bound for S,,, (G, w), it is instructive to
sketch the construction in the simpler setting of an unweighted graph.

Our construction is based on the concepts of clusters and partitions. A cluster
is a subset of the vertices whose induced subgraph is connected. A partition of a
given graph G = (V, E) is a collection of disjoint clusters whose union is V. The
basic procedure used in the construction is a variant of the clustering algorithm
of [Aw]. The construction involves a parameter z, depending on n, to be specified
later. The output of the procedure is a partition of the given graph into clusters
with low radii (specifically, y(n) = O(z(n)lnn)), with the additional property
that “most” of the graph edges are internal to clusters, and only a fraction of
1/z(n) of the edges connect endpoints in different clusters. We refer to edges of
these two types as “internal” and “inter-cluster” edges, respectively.

A spanning tree can be built on the basis of such a partition as follows. First,
construct a shortest-path spanning tree T for every cluster C' in the partition.
Note that since the partition is composed of disjoint clusters, these spanning trees
form a forest in the graph. Now, connect the forest into a single tree by selecting
a suitable tree of intercluster edges.

This last step can be carried out recursively. Given the partition, create an
auxiliary multigraph G by collapsing each cluster C' into a single vertex vc, and
including an edge between two such vertices of G for each original edge connecting
these clusters. (Here is why it is useful to handle multigraphs in this algorithm,

14

rather than simple graphs.) Next, apply the same procedure recursively to G, and
obtain a tree 1. The final tree 1" will consist of the union of 7" and the trees T
constructed for each cluster C.

Observe that internal edges will typically enjoy a lower cost than inter-cluster
edges. This is because the path connecting the endpoints of an edge uw internal
to a cluster C in the final tree T is the path connecting v and w on the tree T,
and the partitioning algorithm guarantees that C' has a low radius. In contrast,
for an inter-cluster edge u;us, where u; € Cy and us € Cs, the path connecting u;
and us in T is not simply the path connecting C; and C, in the tree T. Rather,
this path is expanded when retracting from G to G, by replacing each vertex v¢
on it with an appropriate path segment on the internal tree 7. This heavier cost
for inter-cluster edges is compensated for by the fact that these edges are only
a 1/z(n) fraction of the entire edge set, and therefore their contribution to the
average cost is controllable.

The cost analysis is carried along the following lines. Let f(n,m) be the
maximum, over all n-vertex, m-edge multigraphs G, of S,,/(G,T), where T is the
spanning tree of G' constructed by the above algorithm. Then

1
o) f(n,m/z(n)) - 2y(n) .

This inequality can be explained as follows. The first term in the right-hand
side of the inequality denotes the contribution of the internal edges. This term
is bounded above by 2y(n) since the spanning tree of each cluster is of depth at
most y(n). The second term denotes the contribution of the inter-cluster edges.
In this term, the factor 1/x(n) is an upper bound on the fraction of inter-cluster
edges. The number of edges in G is at most m/z(n), thus the expected cost of an
edge in G is at most f(n, m/z(n)). A path of length ¢ in G expands to a path of
length at most ¢+ (c+ 1)y(n) when the necessary connecting subpaths of internal
edges are inserted. This accounts for the factor f(n,m/x(n))-2y(n) in the second
term.

f(n,m) <2y(n) +

Finally, using the above inequality and choosing xz(n) optimally as

exp(O(VInnlnlnn)) we find that f(n) < exp(O(vInnlnlnn)).

For understanding the weighted case, it is convenient to think of the above
algorithm as an iterative, rather than recursive one. From this point of view,
think of the main clustering procedure as a “machine”, to whom the graph is
“fed” for a number of iterations. In each iteration 7 > 1, the procedure constructs
a partition for the current graph G, (where G is the original graph G), and
then contracts the clusters into single vertices, thus creating the graph G;;; to
be processed in the next iteration. Each such iteration also reduces the number
of “uncovered” edges by a factor of z, until all edges are “covered”. (An edge is
covered if it is internal to some cluster we have already constructed.)

15

Given this view of the partitioning process, one can analyze the radii of the
clusters constructed at each iteration j > 1 (henceforth called “j-clusters). The
partitioning procedure creates the clusters sequentially. Each cluster is “grown”
by starting at a single vertex, and successively merging it with (up to O(y(n)))
layers of neighbouring vertices. Hence as mentioned earlier, each j-cluster has
radius O(y(n)) in the current graph G;. However, in the original graph G, such
clusters have radius r; = O(y?(n)). This can be easily argued inductively, noting
that when a j-cluster is constructed, each merged layer increases the radius by up
to

1+2r j—1, (6)

where the 1 is contributed by the added edge, and the 2r; ; by the diameter of
the (j — 1)-cluster corresponding to the endpoint of that edge in G;. The bound
on r; follows inductively since at most O(y(n)) layers are merged.

Let us next outline the modifications needed for handling the weighted case.
The main problem that needs to be overcome is that in this case, all edges cannot
be treated alike, since when growing a cluster, a single layer merging step will
increase the radius of the resulting cluster by the weight of the heaviest merged
edge, rather than by just one, thus the radii of constructed clusters cannot be
controlled.

The algorithm thus needs to be modified as follows. It is necessary to break the
set of edges E into classes F;, ¢ > 1, according to weights, with E; containing all
edges whose weight is in the range [y*~', y%), for an appropriately chosen parameter
y = y(n,z) (with x a parameter to be determined in the same spirit as in the
unweighted case). Intuitively, we would like to handle the lighter edges first. (We
may, and will, assume that the minimum weight of an edge is 1).

We now feed the classes E; to the “machine” in a pipelined fashion, with
overlaps. Namely, in iteration 1 only the edges of F; are considered, in the next
iteration Fj is added, and so on. In general, the class F; is taken into consideration
for the first time in the jth iteration, and is processed for the next p = O(Inn/Inx)
iterations, each reducing the number of unsatisfied edges in it by a factor of x,
until the entire set E; is exhausted.

A crucial point that must be explained at this point is the role of the parameter
y in the construction. In the weighted case, this parameter has two different
functions. The first is similar to the one it had in the unweighted case, i.e., it
is (more or less) the radius increase bound for constructed clusters. ILe., clusters
constructed for the graph G; in the jth iteration will have radius at most y/3 in
Gj. The second function of the parameter y is governing the weight range of the
edge classes.

16

The combination of these two functions implies that in the construction of new
clusters during a given iteration j, there is a balance between the contributions
to the radius made by previously constructed clusters and by new edges. This is
what guarantees that cluster radii are properly bounded in the original graph G as
well. Specifically, the radius of a j-cluster (constructed in iteration j) is bounded
by r; < y’*!. Formally, this can again be deduced inductively, noting that when
a j-cluster is constructed, each merged layer increases the radius by up to

yj +2r; 1 < 3yj, (7)

where (in analogy with (6)) the ¢/ is contributed by the added edge, and the 2r; ;
by the diameter of the (j — 1)-cluster corresponding to the endpoint of that edge
in G;). This, combined with the fact that at most y/3 layers are added, yields
the desired bound on r; by induction.

We are now ready to formally state and prove the upper bound on S,.

Theorem 5.3 There exists a constant ¢ such that, for every n-vertex multigraph
G and for every weight-function w, Syp(G,w) < exp(cv/lognloglogn).

By Lemma 5.2, it suffices to prove the theorem for every n-vertex multigraph
having at most n(n + 1) edges in its edge multiset.

We shall use an iterative construction to obtain a suitable spanning tree of G.
Again, the construction involves a parameter 1 < z < n depending on n, to be
fixed later. Define

3Inn

p=1 1, w=9lnn, y=u=zpu

Inz

Break the edges multiset E into subclasses E;, for 7+ > 1, according to weights,
defining . .
E; = {e|w(e) €[y, y)}

(Recall that the edge weights are normalized to be greater than or equal to 1.)
As described above, the algorithm proceeds in iterations. In each iteration
Jj we compute some clusters in the graph G;, and mark some of the edges as

“covered.” We then contract the clusters into single nodes, thus preparing the
multigraph G4 for the next iteration.

More precisely, let Ef , for 7,7 > 1, denote the multiset of edges from FE; that
are still uncovered at the beginning of iteration j. The idea of the construction
at iteration j is to partition the vertex set into disjoint clusters such that:

e cach cluster has a spanning tree of radius at most 3/ *!;

17

e in every nonempty edge class E;, 1 < 4 < j, the fraction of inter-cluster
edges is at most 1/z; i.e., |[E/T| < |E!|/x.

Note, that the second requirement implies that iteration j handles only edges
from the edge multisets F; for ¢ < j, i.e., edges of weight less than y?. Avoiding
heavier edges is crucial for guaranteeing the radius bound in the first requirement,
as discussed earlier.

We next present the procedure used for forming the partition in iteration j.
This procedure is a modified version of the clustering algorithm of [Aw]. The
partition is constructed in a “greedy” fashion, by a sequence of stages, each stage
building a single cluster. After each stage, all the vertices of the graph that were
included in the constructed cluster are eliminated from the graph.

Consider the beginning of a stage, and let K be a connected component of
the subgraph induced by the remaining vertices (i.e., the ones not yet included in
any of the previously built clusters). Choose arbitrarily a “root vertex” u in K.
Stratify the vertices and edges of K into layers according to their (unweighted)
distance from u as follows. For each integer £ > 0, let V' (£) be the set of vertices at
(unweighted) distance £ from u in K (where the unweighted distance between two
vertices is defined as the minimal number of edges in a path connecting them).
Also let E!(¢) be the set of edges of E! that join a vertex in V(¢) with a vertex
in V({) UV (£ —1). Let £* be the least £ such that

. 1 . . .
VI<i<j, [Bl(¢+1)| < Z|[E{Q)UE/@2)U...UE(0)]. (%)

If no such 2 exists then the next cluster is the vertex set of K; otherwise the next
cluster is the vertex set V(1) UV (2)U... UV (£).

This process of cluster generation continues until the graph is exhausted (i.e.,
all vertices are assigned to clusters).

Let z(n) be a function of n that will be specified later. The spanning tree T
in an n-vertex multigraph G is constructed as follows:

e Set j=1and G; =G.
e Set x = x(n), p, i, y, and the edge classes E;, as defined above.

e While U; E; # 0 do:

1. Partition the vertex set of G; into clusters as described above.
2. Construct a shortest-path spanning tree T in each cluster C of G;.

3. Add each edge e of each of the constructed trees to the output tree 7'

18

4. Construct the next multigraph G ;41 by contracting each cluster C' into
a single vertex v¢, discarding internal edges from (J; F;, and replacing
each inter-cluster edge ujusq, for u; € C and uy € Cy, by a new edge
connecting the corresponding contracted vertices v¢, and vg,.

5. Set j=j +1.

In order to analyze the output of our algorithm, we first bound the number of
layers added to a cluster during the clustering process in some iteration j. This
growth is bounded by showing that in iteration j, the only sets Ef considered by
the algorithm (i.e., the only nonempty ones) are those satisfying j — p < i < j.

Lemma 5.4 |EJ| < |E|/27~" for every 1 < i < j.

Proof: The claim follows from the fact that |E/™| < |E!|/x for every 1 < i < j.
To see this, note that by definition of the cluster construction process, each time
a cluster is constructed in a connected component K, the number of edges of E’
connecting that cluster to the vertices of K not selected for inclusion is at most %
times the number of edges of Ef included in the cluster. Thus, in the entire graph
the number of edges of F/ joining vertices in different clusters (constituting F/*1)
is at most = times |E!|. O

The above lemma enables us to bound the (weighted) radius of clusters gen-
erated during the execution.
Lemma 5.5 In iteration j, the radius of each cluster is bounded above by y’*!.
Proof: We first prove that in iteration j, the number of layers merged into each
cluster, denoted Bj, is bounded above by

B; < y/3 = 3pzlnn. (8)

To see this, note that by Lemma 5.4, |EX"*| = 0 for every i > 1, which implies
that the augmentation rule (x) governing the addition of layers to the cluster
needs only consider edges from classes E} for j — p+ 1 < i < j. Each additional

layer ¢ implies that some set EZJ (¢) fails to satisfy this condition. Namely, for all
£ such that 1 < £ < £*, at least one 7 such that 1 < i < j satisfies

(O] > B UEI()U. OB~ 1)]

19

By the pigeonhole principle it follows that for £*, there exists at least one such 2
that caused the addition of a layer for at least [£*/p] times. This ¢ satisfies

. _ _ 1

B UE!/(2)U...UE(£*)] > (1+=)¢/],
T

Since the number of edges in the multigraph is at most n(n + 1), it follows that,

for n sufficiently large, £*/p < 3z Inn.

We now prove the bound on the radius of a cluster induced by
Ur<i<j Ur<e<er E’(¢) by induction on j. In order to analyze all iterations together
(including also iteration 1), hypothesize iteration 0 as the one that yielded the
initial graph G, with each vertex representing a cluster of radius 1 (thus trivially
satisfying the inductive claim). Now for j > 1, suppose the claim holds up to
j — 1, and consider the jth iteration. At the beginning of the iteration, every
vertex of the multigraph represents a cluster of radius up to ¢?, by the inductive
hypothesis. Also, every edge considered in iteration j is of length up to 4?. Hence
in constructing a cluster, each additional layer contributes up to 337 to the radius.
By inequality (8) above, the final radius is at most 3y’ - /3 = y/T!, as required.
O

Using the above result we can bound the costs incurred by the edges, obtaining
the following.

Lemma 5.6 cost*(T, E) < 4z’ E)|.

Proof: Let Hz-j denote the set of edges from E; that were covered during iteration
J, Le, , o

H/ = EJ\E™.
We first claim that for every edge e € Hz-j ,

path(T, e)

cost* (T, e) = 0(e)

< 2772, 9)

To see this, note that since e is covered during iteration j, by the previous
lemma, path(T,e) < 2y’! while on the other hand, e € E; implies w(e) > y*~!.

By Lemma 5.4,
H]| < |B]| < | B/’ (10)
It follows from Inequalities (9) and (10) that for every 1 < i < 7,

20

cost*(T, H)) < 22217 ~"+2|E]. (11)

Summing these costs over 1 < j <7+ p — 1, we get that

i+p—1)
cost* (T, E;) < > cost*(T, H}) < 42”p ™| E;]

j=i
for every ¢ > 1. Summing the costs over all weight classes we get
cost*(T, E) =Y cost*(T, E;) < 4z*u™|E|,
i=1
and the lemma follows. O

It follows that the average spanning factor of the constructed tree 7" is bounded
above by

3lnn

27 1112 TL) 1+ Inz

Inz

S(G,w,T) < 4x*pr™ < 43:2(

Selecting = = exp(cy/lognloglogn) for an appropriate constant ¢ optimizes this

bound as S(G,w,T) = exp(O(y/lognloglogn)). This completes the proof of
Theorem 5.3. a

Corollary 5.7 There exists a constant ¢ such that, for n sufficiently large, every
n-vertex multigraph G, w satisfies Val*(G,w) < exp(cy/lognloglogn).

Proof: By Theorem 4.1, Val*(G, w) = maxg u Sopt(G', w'), where G', w' ranges
over all the weighted multigraphs obtained from G, w by replication. The claim
thus follows from Theorem 5.3. O

We observe that the tree construction algorithm as described above can be
used within a procedure (based on the ellipsoid algorithm) for implementing the
first step in the online k-server algorithm of Theorem 3.1, yielding a polynomial-
time algorithm for the problem; i.e., the optimal strategy for the tree player can,
in fact, be efficiently approximated.

6 Grids and hypercubes

In this section, we discuss the value of the game on unweighted grids and hy-
percubes. More generally, we consider the d-dimensional grid G, 4 that is the
Cartesian product of d n-vertex paths and has N = n? vertices. Formally, the

21

vertex set of Gy, 4 consists of all vectors of length d whose coordinates are in
{1,...,n}. The grid contains an edge uv if the vectors v and v differ in exactly
one coordinate where their values differ by exactly 1.

A hypercube is edge-transitive, so Val*(Ga,4) = Sopt(G2,4). For G, 2, the value
of the game can be approximated by the optimal tree. To see this, note that
the n by n discrete torus is edge-transitive. Any tree in the grid G is also a tree
in the torus G'. If we choose a tree T in G with diameter less than an, then
S(G',T) < S(G,T)(1 - %)+ . On the other hand, Val*(G') > Val*(G), because
the edge player on the torus has the option of playing only edges in the grid. The
upper bound we obtain is independent of d.

Theorem 6.1 For the d-dimensional grid G, 4 with N = n® vertices, Sopt (Gn,a) <
2log N.

Proof: Suppose n = 2¥. For the upper bound, we construct a tree T in Gy, 4 of
diameter
dy < (2d=1)(2"=1)=(2d - 1)(n - 1)

such that S(G, 4, Tx) < 2dlogn = 2log N. Partition the vertices of G, 4 into 2¢
subsets inducing copies of G, /3 4. There is a unique d-cube @ consisting of one
vertex from each of these subsets. Form T} by using a copy of Tj_; in each of the
2¢ subsets and a spanning tree of diameter 2d — 1 in @ (a breadth-first search tree
from any vertex will do). Figure 2 illustrates the construction for Gg,. We have
dr, < (2d — 1) + 2dg_1, with dy = 0. Hence dj, < (2d — 1)(2% — 1). Note that G, 4
has dn?~!(n— 1) = dN(1 — 1) edges; let N’ = (2)%. Also, the number of non-tree
edges that join the copies of Gpja4 is dn®' — (2% — 1). We thus have

24.dN'(1-2)S(Gp/2.a:Th— dnd—1—29 1) (d 41
S(Gn,daTk) < (=35 /2’2N’21i);(+1)(dx+1)

< S(Grj2,a, Tr—1) + ((29%11) < S(Gnj2,a, Tr—1) + 2d.

Hence S(Gn,d,Tk) < 2dk. O

For the interesting special case of the hypercube QQq = G4, which is edge-
transitive, we have a slightly better construction. This construction improves on
the general case only by roughly a factor of four, but it is still of interest, since it
is conjectured to be optimal.

Theorem 6.2 Val*(Qq) = Sop(Qq) < (d+1)/2.

Proof: Equality holds for d = 1,2, with no choice of tree. For d > 2, construct
a tree Ty by taking the optimal d — 1-dimensional tree 7* in copy A of Q4—1 and

22

Figure 2: A spanning tree in G2

adding all edges between this and the other copy of @);_;. The edges in copy A have
the same cost* as before, and those between the copies have cost* = 1. Each edge e
in copy B corresponding to an edge €’ in copy A has cost*(Ty, e) = cost*(T*, €')+2.

We have
Sopt(Qa) < S(Qq, Ty) =
W ((d —1)2972(2 - Sppu(Qa-—1) +2) + 2% - 1)_

Hence Sy (Qq) < d%dlSopt(Qd_l) + 1, implying the claim inductively. O

We believe that the general construction described above is essentially optimal
for large n, with Sy (Gra) = 21g N + o(lg N). We prove only that S, (Gpa) >
clog N for some constant c. For clarity, it is useful to first present the lower bound
for the case of d = 2, showing S,,,(Gr2) > clg n+o(lg n). For this we need several
preliminary results.

Lemma 6.3 If A is a set of o® vertices in Gy 2, where a? < ”72, then there are
at least o rows that A intersects but does not fill or at least o columns that A
intersects but does not fill.

Proof: Suppose A intersects r rows and s columns, with 7 > s. Then rs > o?
implies 7 > «, and the result holds for A unless A fills at least one row. If A does
fill a row then n = s < r. Thus A intersects every row and every column. Now,
our goal is to prove that there are at least o rows that A does not fill or at least
a columns that A does not fill. For this not to happen means that A fills more

23

than n — a rows and more than n — o columns. This requires that A has more
. 2
than n® — o? vertices, which is impossible if o* < Z-. O

Lemma 6.4 If A is a set of o vertices in G, 2, where o < ”72, and B is a set
of at most four vertices in A, then there are at least 5 vertices in A that have

neighbors outside A and have distance at least 5 from each vertex of B.

Proof: 'The preceding lemma guarantees a set C' of at least a vertices in A that
are in distinct rows (or distinct columns) and have neighbors outside A. Since
these are in distinct rows, a vertex of B can be within distance 5 of at most §
vertices in C. When we delete from C' the vertices that are too close to B, at

least % vertices remain. O

Lemma 6.5 If T is a spanning tree of G,3 and a < 7, then there are at least

2
355 edges e such that path(T,e) > %.

Proof: Since the grid has maximum degree 4, every subtree (not necessarily
spanning) has an edge whose deletion separates it into two smaller subtrees, each
having at least i of its vertices. Begin with T and successively delete edges from
the biggest remaining component, always splitting that component as evenly as
possible. Do this until [%1 —1 edges have been deleted and the number of pieces

is [%1 On the average, the pieces have about 4a? vertices, with the smallest
piece having at least a? vertices. To see this, note that at every stage, the largest
piece has at most 4 times as many vertices as the smallest piece, because whenever
there is a new smallest size it is at least i of the old largest size. Minimizing x;
subject to 21 < ... < &, < 4zy and Y a; = M yields z; = 255, achieved when
all the other variables are 4 times the smallest. Note also that the largest piece
must have fewer than half the vertices as soon as 8 pieces are requested.

Since each deleted edge of T is incident to two pieces, the average number of
deleted edges incident with a piece is less than 2. Hence at least half the pieces are
incident with at most four deleted edges. (Since otherwise the number of deleted
edges would be too large). If A is the set of vertices of such a piece, let B be
the vertices in A incident to these deleted edges. By the preceding lemma, A has
at least § vertices having neighbors outside A whose distance from each vertex
of B is at least {%. The edges leaving A from these vertices do not belong to T,
since the only edges of T leaving A are incident to vertices of B. For any such
edge e, we have path(T,e) > {%, since the path in T between the ends of e must
contain a path in the piece of T" induced by A from e to one of the vertices in B.
Harvesting at least & endpoints of such edges from each of at least % pieces of T’

yields at least % such edges, since we might have counted each edge twice. (Of

24

course, path(T,e) > § for any edge we have counted twice, but we are not trying
to optimize the constants here.) O

We are now ready to prove our lower bound.

Theorem 6.6 S, (Gr2) > Inn.

1
= 1024

Proof: Given an arbitrary spanning tree T of G, 5, the preceding lemma guar-
antees at least % edges with cost” at least {5 for any a < 7. We now choose an
edge e at random, defining a random variable X by X = cost*(T,e). We seek a
lower bound on E[X], the average cost* of an edge, since Spi(Gn2) = E[X]. We
use the fact that, for a discrete random variable X attaining nonnegative integer

values, we have E[X]| = > ;51 Prob(X > k). For k < &, let a = 16k. Then

n? 1
Prob(X > k) > _
rob(X 2 k) 2 S =)~ 1024k

We thus obtain

1 n/64] 1
_ o>)
EIXT> 1551 kz::l k= 1094 "

More generally, we prove that Theorem 6.1 is optimal, up to a constant factor,
for all n,d > 2.

Theorem 6.7 There exists an absolute constant ¢ > 0 such that for every n,d >
2, Sopt(Gn,a) > cdlogn = clog N.

The proof of Theorem 6.7 requires several preparations. We prove it for, say,
c = 107'% (We note that we make no attempt to optimize the constants here
and in the rest of the proof.) Clearly, with this value of ¢, if both n and d do not
exceed 10° there is nothing to prove and hence we may assume that at least one
of them does exceed 105, i.e.,

Maz{n,d} > 10°. (12)

Suppose n,d > 2 and let G = G4 = (V,E). Denote M = {1,2,...,n}.
Recall that the vertices of G are naturally represented by all vectors of length d
whose coordinates are in M. If uv is an edge of G, where u,v € V', we say that the
direction of the edge uv is ¢ if 7 is the unique coordinate in which u and v differ.
In the course of the proof we need to consider vectors whose coordinates except

25

one are all determined. It is convenient to denote a non-determined coordinate
by the symbol . Thus, for a subset A C V and for a vector v = (vy,...,vq) with
v; = * and v; € M for all j # ¢ we say that A intersects the vector v if there is a
u € A such that v coincides with v on all the coordinates but the i—th (i.e., the
projection of u on {1,...,d} \ {7} is equal to that of v). We say that A properly
intersects v if A intersects v and also its complement V' '\ A intersects v. Note that
in this case there is at least one edge uw of G in direction ¢ which joins a vertex
u of A with a vertex w of V' \ A, with the property that both v and w coincide
with v on all coordinates but the i-th.

We need the following lemma, proved in [CFGS]. (The proof in [CFGS] is
given only for the case n = 2, but the same proof works for all integers n. See
also [Al]).

Lemma 6.8 [CFGS] Let D = {1,...d} be a finite set and let By,..., By be
subsets of D such that each element of D belongs to at least k of the sets B;. Let
F be a family of vectors of length d whose coordinates, indexed by the elements
of D, lie in M = {1,...,n}. For each i, 1 < i < m, let F; denote the set of all
projections of the vectors in F on B;. Then

\FIF < I] |7l

=1

Returning to the graph G = (V, E)) we now prove:

Lemma 6.9 Suppose A C V, |A| = x¢, where x > 1 is not necessarily an integer.
Let A; denote the set of all vectors v such that A intersects v, and let Al denote
the set of all vectors v such that A properly intersects v. Then

d
>4 > dat!
i=1
and
d
ST IAL > dz* (1 - x/n).
i=1

Proof: Apply Lemma 6.8 to the grid G, 4 = (V, E), where D is the set of d
coordinates in the vectors of V. Specifically, set F = A, m =d, k =d —1 and
B; = D\ {i}. Clearly, in this case |F;| = |4;| and hence, by the lemma:

d 1 d
xd(d—l) — ‘A|d_1 < H |Az| < (8 Z ‘Ai|)d-
=1

=1

26

This implies the first part of Lemma 6.9.

To prove the second part observe that since |A] = z% A cannot intersect
without properly intersecting more than x¢/n vectors v whose i-th coordinate is
. Thus |AL| > |A;] — z¢/n for all 4, and summation over 1 <4 < d completes the
proof of the lemma. O

Let v be a vertex of G, let y be a positive real, and suppose i € D = {1,...,d}.
Let S denote the set of all vertices of G whose distance from v is less than y(d—1)
and let S; denote the set of projections of the members of S on D\ {i}. Denote
by L(y,d) the maximum possible cardinality of S; where the maximum is taken
over all possible choices of v and 1.

Lemma 6.10 For all y > 0:

. d—14(d—-1
L(y,d) < 2M“"{d—1’y(d—1)}< ;_(.)y). (13)

Therefore, for all y > 1,
L(y,d) < (2e(y + 1))

and for all y <1
L(y,d) < (2¢%)1,

where e = 2.71828... is the basis of the natural logarithm.

Proof: Suppose v = (vq,...,v4) and let F' be a set of vertices of G whose distance
from v is at most y(d — 1). Suppose, further, that no two members of F' have the
same projection on D\ {i}. Clearly, it suffices to show that the cardinality of F is
at most the right hand side of (13). If u = (u1, ..., ug) is a member of F then, for
each j # 4, u; = v;+¢;, where 32, ; |¢;| < y(d—1). The number of ways to choose
the signs of all the ¢;-s which are not 0 is at most 2M{d-1v(d=1)} 'since there are
at most Min{d—1,y(d—1)} such ¢;. The number of ways to choose the absolute
values of the ¢;-s is less than the number of ways to write y(d — 1) as an ordered
sum of d non-negative integers (the first d — 1 of which will serve as our numbers
€;), and this is precisely the binomial coefficient (dilzﬁdfl)y). This completes the
proof of (13). The other two estimates follow from this one by using the fact that

(Z) < (ea/b)® for all integers a and b and the fact that (1 + i)y <e. O

We can now return to the proof of Theorem 6.7. Let 7" be a spanning tree
of G = G 4. Let x be a real number, 1.5 < z < %n. By deleting edges of T’
we can break it into connected components each containing at most z¢ and at
least 52”—2 vertices. (This is possible since the maximum degree of a vertex of G
(and hence of a vertex of T') is at most 2d, and thus if we repeatedly split 7" into

27

connected components by always splitting the biggest remaining component as
evenly as possible we will never have two components the ratio between the sizes
of which exceeds 2d). It follows that the number ¢ of connected components, and
hence the number of deleted edges of T', does not exceed Qi—f}d. Let U denote the

set of all end-vertices of these deleted edges. Then |U| < 4‘12d.

Define z; to be the positive real so that x? is the number of vertices in the j-th
connected component, (1 < j <t). Since z; < x < 0.75n for each j, Lemma 6.9
implies that the total number of edges of G emanating from the j-th connected
component to vertices in other components is at least idx;l*l. Observe that if y is
a real positive number and if an end of such an edge is at distance at least y(d—1)
from all the vertices in U that lie in the same connected component as that end
then the length of the elementary cycle corresponding to this edge is greater than
y(d — 1). This is because the elementary cycle has to contain a vertex in U. We
next obtain a lower bound for the number of such edges. Let us fix a direction 1,
and consider only edges in direction 7. If we let A denote the set of vertices of the
Jj-th component C; and use the notation of Lemma 6.9, we conclude that there are
at least | A}| vertices in C; whose projections on D\ {i} are pairwise different, such
that from each such vertex there is an edge in direction ¢ emanating to another
connected component. By the definition of L(y,d), each vertex of U can be at
distance less than y(d—1) from no more than L(y, d) such vertices. Summing over
all connected components and over all directions we conclude that the number of
edges that join distinct components whose elementary cycles have length that
exceeds y(d — 1) is at least

[N
‘]7
Since |U| < 4dn/z® and since the minimum possible value of 3°%_, z§~" subject

to the constraint that # > z; > 0 and X}_, 24 = n? is ’;—Zxd* = n?/x we obtain
the following lemma.

Lemma 6.11 For each spanning tree T in G = G, 4 and for each real z, 1.5 <
x < 0.75n and positive real y, the number of edges of G whose elementary cycles
have length that exceeds y(d — 1) is at least

dn¢ nd
— — L(y,d)4d*—.

We can now prove Theorem 6.7. For technical reasons it is convenient to
consider three possible cases, depending on the values of the parameters n and d.

28

Case I: n < 80.

In this case d > 10°, by (12). Put x = 1.5, y = 1/20. By Lemma 6.10 L(y,d) <
(2€2)005(d=1) < 1,247, Hence (since z = 1.5),

nd 12 dn? dnd
Ly, d)4d’— < lqq— .
. d)ad™5 < (35) r 16z
dn 1
Therefore, by Lemma 6.11, there are at least 75— = ﬂdnd edges whose cycles have

length that exceeds o (d— 1) and since the total number of edges is dn¢~!(n—1) <
dn® and the tree T was arbitrary we conclude that in this case Sop(Gna) >
55(d — 1) > cdlogn, as needed.
Case II: d < 20.

In this case, which requires a little more work, n > 10°, by (12). For each real =

satisfying
1600 < z < 27L (14)

define y = £/1600. By Lemma 6.10 L(y,d) < (2e(y + 1)) ! < - and hence

pd—1
160d

d 4d dn < dn?®

x4 — 1604~ x — 20z’

where here we applied the fact that d > 2.

Ly, d)ad®. <

It follows from Lemma 6.11 that at least a fraction 1/(20z) of the edges have
cycles of length more than z(d — 1)/1600, for each z satisfying (14). Therefore,
if X is the random variable defined on the edges f of our graph G by letting
X (f) be the length of the elementary cycle of f divided by d — 1 it follows that
for each z satisfying (14), the probability Prob(X > z/1600) is at least 1/(20z).
Therefore, by defining z = /1600 we conclude that for each integer z satisfying

1<z < gon, Prob(X > z) >1/(32000z). Thus the expectation of X is at least

|3n.,/6400] [3n,/6400 |

> Prob(X>z)> >

z=1 z=1

> 10"%log n.

32000z

The average cost of an edge with respect to the tree T"is d—1 times the expectation
of X and hence we conclude that in this case Sop(Gra) > 107%(d — 1)logn >
cdlogn, as required.

Case III: n > 80 and d > 20.

For each real z, 30 < z < 0.75n define y by y +1 = £. By Lemma 6.10

4e
s

L(y,d) < %=1 and hence

n 4d dn® dn¢
2T
— <i .
Ly, d) 4d 20-1 ¢ < 16z

29

Therefore, by Lemma 6.11, for every z, 30 < x < 0.75n, with probability at least
1/(16z) the random variable X defined in the previous case exceeds (x —4e)/(4e).
As before (by letting z = [(z — 4e)/4e]| take integer values) it follows that the
expectation of this random variable is at least

[3n/(16e)—1]

1
2 64e(z + 1)

2>[30/(4¢)~1]

> 10 ®logn,

and this implies that in this case t00 Sopt(Gn,a) > cdlogn and completes the proof
of Theorem 6.7. O

References

[ADDJ] I. Althofer, G. Das, D. Dobkin and D. Joseph, “Generating sparse
spanners for weighted graphs,” Proc. 2nd Scandinavian Workshop
on Algorithm Theory, July 1990.

[Al] N. Alon, Probabilistic methods in extremal finite set theory, Proc.
of the Conf. on Extremal Problems for Finite Sets, Hungary, 1991.

[Aw] B. Awerbuch, “Complexity of Network Synchronization,” J. ACM
32 (1985), 804-823.

[AwPe] B. Awerbuch and D. Peleg, “Sparse Partitions,” Proc. 31st Annual
Symp. on Foundations of Computer Science, IEEE, pp. 503-513,
1990.

[BBKTW] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos and A. Wigder-
son, “On the Power of Randomization in Online Algorithms”, Proc.
22nd Annual ACM Symp. on Theory of Computing, pp. 379-386,

1990.
Bo] B. Bollobés. Eztremal Graph Theory, Academic Press, 1978.
[BLS] A. Borodin, N. Linial and M. Saks, “An Optimal On-line Algorithm

for Metrical Task Systems”, J. of the ACM (1990).

[CFGS] F.R.K. Chung, P. Frankl, R.L. Graham and J.B. Shearer, “Some
Intersection Theorems for Ordered Sets and Graphs”, J. Combina-
torial Theory, Ser. A 43 (1986), 23-37.

[ChLa] M. Chrobak and L. Larmore, “An Optimal On-Line Algorithm for
k Servers on Trees,” STAM J. on Computing 20 (1991), 144-148.

30

[FiRaRa)

[FRRS]

[FKLMSY]

[MaMcS]]

[PS]

[SVI

A. Fiat, Y. Rabani and Y. Ravid, “Competitive k-server Algo-
rithms,” Proc. 81st Annual IEEE Symp. on Foundations of Com-
puter Science, pp. 454-463, 1990.

A. Fiat, Y. Rabani, Y. Ravid and B. Schieber, “A deterministic
O(k®)—competitive k-server algorithm for the circle”, to appear.

A. Fiat, R.M. Karp, M. Luby, L.A. McGeoch, D.D. Sleator and
N.E. Young, “Competitive Paging Algorithms,” J. of Algorithms
12 (1991), 685-699.

M.S. Manasse, L..A. McGeoch and D.D. Sleator, “Competitive Al-
gorithms for On-Line Problems,” J. of Algorithms 11 (1990), 208-
230.

D. Peleg and Alejandro A. Schiffer, “Graph Spanners,” J. of Graph
Theory 13 (1989), 99-116.

J. M. Stern and S. A. Vavasis, “ Nested dissection for Sparse
Nullspace Bases,” STAM J. Matr. Anal. Appl., to appear.

31

